Proportional-integral-derivative (pid) Controller Design for Robust Stability of Arbitrary Order Plants with Time-delay and Additive Uncertainty

نویسندگان

  • Manoj Gogoi
  • John M. Watkins
  • Tooran Emami
  • Susan Matveyeva
چکیده

In the process control industry, majority of control loops are based on ProportionalIntegral-Derivative (PID) controllers. The basic structure of the PID controllers makes it easy to regulate the process output. Design methods leading to an optimal and effective operation of the PID controllers are economically vital for process industries. Robust control has been a recent addition to the field of control engineering that primarily deals with obtaining system robustness in presences of uncertainties. In this thesis, a graphical design method for obtaining the entire range of PID controller gains that robustly stabilize a system in the presence of time delays and additive uncertainty is introduced. This design method primarily depends on the frequency response of the system, which can serve to reduce the complexities involved in plant modeling. The fact that time-delays and parametric uncertainties are almost always present in real time processes makes our controller design method very vital for process control. We have applied our design method to a DC motor model with a communication delay and a single area nonreheat steam generation unit. The results were satisfactory and robust stability was achieved for the perturbed plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) CONTROLLER DESIGN FOR ROBUST STABILITY OF ARBITRARY ORDER PLANTS WITH TIME-DELAY AND ADDITIVE UNCERTAINTY A Thesis By

In the process control industry, majority of control loops are based on ProportionalIntegral-Derivative (PID) controllers. The basic structure of the PID controllers makes it easy to regulate the process output. Design methods leading to an optimal and effective operation of the PID controllers are economically vital for process industries. Robust control has been a recent addition to the field...

متن کامل

A Design Method for Robust Stabilizing Modified Pid Controllers for Time-delay Plants with Uncertainty

We examine a design method for robust stabilizing modified proportional– integral–derivative (PID) controllers for time-delay plants with uncertainty. The PID controller structure is very widely used in industrial applications. However, the plants to which the PID controller is applicable are restricted. Yamada, Hagiwara and Shimizu proposed a design method for robust stabilizing modified PID c...

متن کامل

Designing a Fractional Order PID Controller for a Two-Area Micro-Grid under Uncertainty of Parameters

Increasing the number of microgrids has raised the complexity and nonlinearity of the power system and conventional controllers do not present acceptable efficiency in a wide range of operation points. In this study, a fractional order proportional–integral–derivative controller optimized with hybrid grey wolf-pattern search algorithm is used to control the frequency of each area of the microgr...

متن کامل

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

متن کامل

Robust Stability Regions of PID Parameters for Uncertainty Systems with Time Delay Using D-partition Technique ⋆

In this paper, a method is introduced for finding gains for all proportional integral derivation (PID) controllers that satisfy a robust performance constraint for a given transfer function of any order with time-delay by using the frequency response. The H-infinity index of additive weight uncertainty on the basis of robust stability condition of closed loop system is first get by small gain t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010